4.6 Article

Metabolic Engineering of Escherichia coli for the Synthesis of the Plant Polyphenol Pinosylvin

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 81, 期 3, 页码 840-849

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02966-14

关键词

-

资金

  1. BOOST fund PNP-EXPRESS of the NRW Strategieprojekt BioSC
  2. Helmholtz Initiative Synthetic Biology of the Helmholtz Association

向作者/读者索取更多资源

Plant polyphenols are of great interest for drug discovery and drug development since many of these compounds have health-promoting activities as treatments against various diseases, such as diabetes, cancer, or heart diseases. However, the limited availability of polyphenols represents a major obstacle to clinical applications that must be overcome. In comparison to the quantities of these compounds obtained by isolation from natural sources or costly chemical synthesis, the microbial production of these compounds could provide sufficient quantities from inexpensive substrates. In this work, we describe the development of an Escherichia coli platform strain for the production of pinosylvin, a stilbene found in the heartwood of pine trees which could aid in the treatment of various cancers and cardiovascular diseases. Initially, several configurations of the three-step biosynthetic pathway to pinosylvin were constructed from a set of two different enzymes for each enzymatic step. After optimization of gene expression and evaluation of different construct environments, low pinosylvin concentrations up to 3 mg/liter could be detected. Analysis of the precursor supply and a comparative analysis of the intracellular pools of pathway intermediates and product identified the limited malonyl coenzyme A (malonyl-CoA) availability and low stilbene synthase activity in the heterologous host to be the main bottlenecks during pinosylvin production. Addition of cerulenin for increasing intracellular malonyl-CoA pools and the in vivo evolution of the stilbene synthase from Pinus strobus for improved activity in E. coli proved to be the keys to elevated product titers. These measures allowed product titers of 70 mg/liter pinosylvin from glucose, which could be further increased to 91 mg/liter by the addition of L-phenylalanine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据