4.7 Article

Electrochemical and optical characterization of p- and n-doped poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] -: art. no. 044704

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1949188

关键词

-

向作者/读者索取更多资源

We study electrochemical p- and n-type doping in the well-known light-emitting polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). Doping reactions are characterized using cyclic voltammetry. Optical measurements including photoluminescence and UV/Vis/NIR transmission were performed on doped samples. We find that oxidation in MEH-PPV is a highly reversible reaction resulting in stable freestanding doped films, while the reduced form is unstable and the reaction irreversible. We discuss the dependence of doping reactions on scan rate, film thickness, salt type and concentration, and working electrode type. We observe the development of two additional broad absorption bands in both lightly and heavily doped films accompanied by a slight blueshift in the primary optical transition, suggesting bipolaron band formation. Finally we find that both p and n dopings result in extremely sensitive photoluminescence quenching. We propose a physical model for understanding electrochemical doping in MEH-PPV and the implications this has on the development of such technologies as polymer light-emitting electrochemical cells, electrochromic devices, actuators, and sensors. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据