4.6 Article

Theoretical investigation of surface roughness scattering in silicon nanowire transistors

期刊

APPLIED PHYSICS LETTERS
卷 87, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2001158

关键词

-

向作者/读者索取更多资源

Using a full three-dimensional (3D), quantum transport simulator, we theoretically investigate the effects of surface roughness scattering (SRS) on the device characteristics of Si nanowire transistors (SNWTs). The microscopic structure of the Si/SiO2 interface roughness is directly treated by using a 3D finite element technique. The results show that (1) SRS reduces the electron density of states in the channel, which increases the SNWT threshold voltage, and (2) the SRS in SNWTs becomes less effective when fewer propagating modes are occupied, which implies that SRS is less important in small-diameter SNWTs with few modes conducting than in planar metal-oxide-semiconductor field-effect-transistors with many transverse modes occupied. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据