4.8 Article

Complementary sex determination substantially increases extinction proneness of haplodiploid populations

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0502271102

关键词

diploid male production; haplodiploidy; hymenoptera; pollinator decline; conservation genetics

向作者/读者索取更多资源

The role of genetic factors in extinction is firmly established for diploid organisms, but haplodiploids have been considered immune to genetic load impacts because deleterious alleles are readily purged in haploid males. However, we show that single-locus complementary sex determination ancestral to the haplodiploid Hymenoptera (ants, bees, and wasps) imposes a substantial genetic load through homozygosity at the sex locus that results in the production of inviable or sterile diploid males. Using stochastic modeling, we have discovered that diploid male production (DMP) can initiate a rapid and previously uncharacterized extinction vortex. The extinction rate in haplodiploid populations with DMP is an order of magnitude greater than in its absence under realistic but conservative demographic parameter values. Furthermore, DMP alone can elevate the base extinction risk in haplodiploids by over an order of magnitude higher than that caused by inbreeding depression in threatened diploids. Thus, contrary to previous expectations, haplodiploids are more, rather than less, prone to extinction for genetic reasons. Our findings necessitate a fundamental shift in approaches to the conservation and population biology of these ecologically and economically crucial insects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据