4.8 Article

Genome-wide screen identifies host genes affecting viral RNA recombination

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0504844102

关键词

host factors; plus-strand RNA virus; tombusvirus; yeast; evolution

资金

  1. NIAID NIH HHS [R03 AI061437, R03 AI06143701A1] Funding Source: Medline

向作者/读者索取更多资源

Rapid evolution of RNA viruses with mRNA-sense genomes is a major concern to health and economic welfare because of the devastating diseases these viruses inflict on humans, animals, and plants. To test whether host genes can affect the evolution of RNA viruses, we used a Saccharomyces cerevisiae single-gene deletion library, which includes approximate to 80% of yeast genes, in RNA recombination studies based on a small viral replicon RNA derived from tomato bushy stunt virus. The genome-wide screen led to the identification of five host genes whose absence resulted in the rapid generation of new viral RNA recombinants. Thus, these genes normally suppress viral RNA recombination, but in their absence, hosts become viral recombination hotbeds. Four of the five suppressor genes are likely involved in RNA degradation, suggesting that RNA degradation could play a role in viral RNA recombination. In contrast, deletion of four other host genes inhibited virus recombination, indicating that these genes normally accelerate the RNA recombination process. A comparison of deletion strains with the lowest and the highest recombination rate revealed that host genes could affect recombinant accumulation by up to 80-fold. Overall, our results demonstrate that a set of host genes have a major effect on RNA virus recombination and evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据