4.8 Article

Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation

期刊

CIRCULATION
卷 112, 期 4, 页码 471-481

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCULATIONAHA.104.506857

关键词

remodeling; ion channels; fibrillation; valves; atrium

向作者/读者索取更多资源

Background - Valvular heart disease (VHD), which often leads to atrial fibrillation (AF), and AF both cause ion-channel remodeling. We evaluated the ion-channel gene expression profile of VHD patients, in permanent AF (AF-VHD) or in sinus rhythm (SR-VHD), in comparison with patients without AF or VHD, respectively. Methods and Results - We used microarrays containing probes for human ion-channel and Ca2+-regulator genes to quantify mRNA expression in atrial tissues from 7 SR-VHD patients and 11 AF-VHD patients relative to 11 control patients in SR without structural heart disease (SR-CAD). From the data set, we selected for detailed analysis 59 transcripts expressed in the human heart. SR-VHD patients differentially expressed 24/59 ion-channel and Ca2+-regulator transcripts. There was significant overlap between VHD groups, with 66% of genes altered in SR-VHD patients being similarly modified in AF-VHD. Statistical differences between the AF- and SR-VHD groups identified the specific molecular portrait of AF, which involved 12 genes that were further confirmed by real-time reverse transcription-polymerase chain reaction. For example, phospholamban, the beta-subunit MinK (KCNE1) and MIRP2 (KCNE3), and the 2-pore potassium channel TWIK-1 were upregulated in AF- VHD compared with SR-VHD, whereas the T-type calcium-channel Cav3.1 and the transient-outward potassium channel Kv4.3 were downregulated. Two-way hierarchical clustering separated SR-VHD from AF- VHD patients. AF- related changes in L-type Ca2+-current and inward-rectifier current were confirmed at protein and functional levels. Finally, for 13 selected genes, SR restoration reversed ion-channel remodeling. Conclusions - VHD extensively remodels cardiac ion-channel and transporter expression, and AF alters ion-channel expression in VHD patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据