4.4 Article Proceedings Paper

Identification of organelles and vesicles in single cells by Raman microspectroscopic mapping

期刊

VIBRATIONAL SPECTROSCOPY
卷 38, 期 1-2, 页码 85-93

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.vibspec.2005.02.008

关键词

single cell spectroscopy; biomedical spectroscopy; Raman spectroscopy; human cells

向作者/读者索取更多资源

Scope of the present paper is to develop non-resonant Raman microspectroscopic mapping techniques for single cells studies in order to identify subcellular structures by their spectral signatures. Human lung fibroblast cells were fixed in formalin and stored in buffer in order to prevent morphological and chemical changes during data acquisition. Raman maps were recorded with 1 mu m step size at 785 nm excitation and with 0.3 mu m step size at 532 nm excitation. Spectral details could be resolved such as the distinction of RNA and DNA, proteins, cholesterol and phospholipids like phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Fitting of cluster averaged spectra by linear combinations of reference spectra was used to approximate the subcellular composition. Images could be reconstructed revealing the protein, nucleic acid and lipid concentration. Based on these compositional information, color coded cluster memberships were correlated with nucleus, cytoplasm, endoplasmic reticulum, vesicles and peripheral membrane. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据