4.6 Article

Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition -: art. no. 033715

期刊

JOURNAL OF APPLIED PHYSICS
卷 98, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2001146

关键词

-

向作者/读者索取更多资源

The resistive switching mechanism of 20- to 57-nm-thick TiO2 thin films grown by atomic-layer deposition was studied by current-voltage measurements and conductive atomic force microscopy. Electric pulse-induced resistance switching was repetitively (> a few hundred times) observed with a resistance ratio > 10(2). Both the low- and high-resistance states showed linear log current versus log voltage graphs with a slope of 1 in the low-voltage region where switching did not occur. The thermal stability of both conduction states was also studied. Atomic force microscopy studies under atmosphere and high-vacuum conditions showed that resistance switching is closely related to the formation and elimination of conducting spots. The conducting spots of the low-resistance state have a few tens times higher conductivity than those of the high-resistance state and their density is also a few tens times higher which results in a similar to 10(3) times larger overall conductivity. An interesting finding was that the area where the conducting spots do not exist shows a few times different resistance between the low- and high-resistance state films. It is believed that this resistance change is due to the difference in point defect density that was generated by the applied bias field. The point defects possibly align to form tiny conducting filaments in the high-resistance state and these tiny conducting filaments gather together to form stronger and more conducting filaments during the transition to the low-resistance state. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据