4.7 Article

Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach:: I.: Fiber elongation

期刊

THEORETICAL AND APPLIED GENETICS
卷 111, 期 4, 页码 757-763

出版社

SPRINGER
DOI: 10.1007/s00122-005-2063-z

关键词

-

向作者/读者索取更多资源

The current study is the first installment of an effort to explore the secondary gene pool for the enhancement of Upland cotton (Gossypium hirsutum L.) germplasm. We developed advanced-generation backcross populations by first crossing G. hirsutum cv. Tamcot 2111 and G. barbadense cv. Pima S6, then independently backcrossing F-1 plants to the G. hirsutum parent for three cycles. Genome-wide mapping revealed introgressed alleles at an average of 7.3% of loci in each BC3F1 plant, collectively representing G. barbadense introgression over about 70% of the genome. Twenty-four BC3F1 plants were selfed to generate 24 BC3F2 families of 22-172 plants per family (totaling 2,976 plants), which were field-tested for fiber elongation and genetically mapped. One-way analysis of variance detected 22 non-overlapping quantitative trail loci (QTLs) distributed over 15 different chromosomes. The percentage of variance explained by individual loci ranged from 8% to 28%. Although the G. barbadense parent has lower fiber elongation than the G. hirsutum parent, the G. barbadense allele contributed to increased fiber elongation at 64% of the QTLs. Two-way analysis of variance detected significant (P < 0.001) among-family genotype effects and genotypexfamily interactions in two and eight regions, respectively, suggesting that the phenotypic effects of some introgressed chromosomal segments are dependent upon the presence/absence of other chromosomal segments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据