4.6 Article

Development of a Transferable Bimolecular Fluorescence Complementation System for the Investigation of Interactions between Poly(3-Hydroxybutyrate) Granule-Associated Proteins in Gram-Negative Bacteria

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 79, 期 9, 页码 2989-2999

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.03965-12

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

Poly(3-hydroxybutyrate) (PHB) granules are organelle-like multienzyme-polymer complexes (carbonosomes) and are widespread storage compounds in prokaryotes. The interaction of three PHB granule-bound proteins (PHB synthase PhaC1, phasin PhaP5, and PHB/DNA binding protein PhaM) was studied in vivo by bimolecular fluorescence complementation (BiFC) microscopy in Ralstonia eutropha. To this end, a mobilizable 2-plasmid system for arabinose-controlled expression of protein fusions with the N-terminal (YN) and C-terminal (YC) parts of the enhanced yellow fluorescent protein (eYfp) in Gram-negative bacteria was developed. Both plasmids were stably expressed in Escherichia coli and in transconjugants of R. eutropha. Homo-oligomerization of PhaC1, PhaP5, and PhaM and interactions between PhaC1 and PhaM and between PhaM and PhaP5 were detected in R. eutropha and colocalized with PHB granules under PHB-permissive conditions. PhaM-PhaC1 complexes were detected near the midcell/nucleoid region in the absence of PHB. Expression of BiFC complexes in R. eutropha with PhaM (PhaM homo-oligomers or PhaM-PhaC1 or PhaM-PhaP5 complexes) resulted in substantial cell elongation compared to wildtype cells and in BiFC signals that were generally located near the midcell/nucleoid region. Western blot analysis of wild-type cell extracts and proteome analysis of PHB granule-bound proteins revealed that PhaM and PhaP5 are expressed in R. eutropha and that PhaM is constitutively expressed independently of the presence or absence of PHB. Size exclusion chromatography analysis in combination with cross-linking experiments of purified PhaP5-His6 and PhaM-His(6) showed that PhaP5 forms dimers and that PhaM is present in oligomeric (dodecamer) form. Implications of this finding for subcellular PHB localization and initiation of PHB granule formation in R. eutropha will be discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据