4.4 Article Proceedings Paper

The vertical metal insulator semiconductor tunnel transistor: A proposed Fowler-Nordheim tunneling device

期刊

MICROELECTRONIC ENGINEERING
卷 81, 期 2-4, 页码 171-180

出版社

ELSEVIER
DOI: 10.1016/j.mee.2005.03.003

关键词

tunnel transistors; titanium dioxide; Fowler-Nordheim tunneling

资金

  1. Engineering and Physical Sciences Research Council [GR/S09883/01] Funding Source: researchfish

向作者/读者索取更多资源

We propose a new field-effect transistor, the vertical metal insulator semiconductor tunnel transistor (VMISTT) which operates using gate modulation of the Fowler-Nordheim tunneling current through a metal insulator semiconductor (M-I-S) diode. The VMISTT has significant advantages over the metal-oxide-semiconductor field-effect transistor in device scaling. In order to allow room-temperature operation of the VMISTT, the tunnel oxide has to be optimized for the metal-to-insulator barrier height and the current-voltage characteristics. We have grown TiO2 layers as the tunnel insulator by oxidizing 7 and 10 nm thick Ti metal films vacuum-evaporated on silicon substrates, and characterized the films by current-voltage and capacitance-voltage techniques. The quality of the oxide films showed variations, depending on the oxidation temperatures in the range of 450-550 degrees C. Fowler-Nordheim tunneling was observed at low temperatures at bias voltage of 2 V and above and a barrier height of approximately 0.4 eV was calculated. Leakage currents present were due Schottky-barrier emission at room-temperature, and hopping at liquid nitrogen temperature. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据