4.3 Article

Specific carotid body chemostimulation is sufficient to elicit phrenic poststimulus frequency decline in a novel in situ dual-perfused rat preparation

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00812.2004

关键词

sleep apnea; respiratory chemosensitivity; working heart-brain stem preparation; control of breathing

向作者/读者索取更多资源

Time-dependent ventilatory responses to hypoxic and hypercapnic challenges, such as posthypoxic frequency decline (PHxFD) and posthypercapnic frequency decline (PHcFD), could profoundly affect breathing stability. However, little is known about the mechanisms that mediate these phenomena. To determine the contribution of specific carotid body chemostimuli to PHxFD and PHcFD, we developed a novel in situ arterially perfused, vagotomized, decerebrate rat preparation in which central and peripheral chemoreceptors are perfused separately (i.e., a nonanesthetized in situ dual perfused preparation). We confirmed that 1) the perfusion of central and peripheral chemoreceptor compartments was independent by applying specific carotid body hypoxia and hypercapnia before and after carotid sinus nerve transection, 2) the PCO2 chemoresponse of the dual perfused preparation was similar to other decerebrate preparations, and 3) the phrenic output was stable enough to allow investigation of time-dependent phenomena. We then applied four 5-min bouts ( separated by 5 min) of specific carotid body hypoxia (40 Torr PO2 and 40 Torr PCO2) or hypercapnia ( 100 Torr PO2 and 60 Torr PCO2) while holding the brain stem PO2 and PCO2 constant. We report the novel finding that specific carotid body chemostimuli were sufficient to elicit several phrenic time-dependent phenomena in the rat. Hypoxic challenges elicited PHxFD that increased with bout, leading to progressive augmentation of the phrenic response. Conversely, hypercapnia elicited short-term depression and PHcFD, neither of which was bout dependent. These results, placed in the context of previous findings, suggest multiple physiological mechanisms are responsible for PHxFD and PHcFD, a redundancy that may illustrate that these phenomena have significant adaptive advantages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据