4.2 Article

Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators

期刊

JOURNAL OF BIOLOGICAL RHYTHMS
卷 20, 期 4, 页码 279-290

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0748730405278292

关键词

EEG; slow-wave sleep; sleep spindles; diurnal preference; memory; Period genes

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

Daily rhythms in sleep and waking performance are generated by the interplay of multiple external and internal oscillators. These include the lightdark and social cycles, a circadian hypothalamic oscillator oscillating virtually independently of behavior, and a homeostatic oscillator driven primarily by sleep-wake behavior. Both internal oscillators contribute to variation in many aspects of sleep and wakefulness (e.g., sleep timing and duration, REM sleep, non-REM sleep, REM density, sleep spindles, slow-wave sleep, electroencephalographic oscillations during wakefulness and sleep, and performance parameters, including attention and memory). The relative contribution of the oscillators varies greatly between these variables. Sleep and performance cannot be predicted by either oscillator independently but critically depend on their phase relationship and amplitude. The homeostatic oscillator feeds back onto the central pacemaker or its outputs. Thus, the amplitude of observed circadian variation in sleep and performance depends on how long we have been asleep or awake. During entrainment to external 24-h cycles, the opposing interplay between circadian and homeostatic changes in sleep propensity consolidates sleep and wakefulness. Some physiological correlates and mediators of both the circadian process (e.g., melatonin and hypocretin rhythms) and the homeostat (e.g., EEG, slow-wave activity, and adenosine release) have been established, offering targets for the development of countermeasures for circadian sleep and performance disorders. Interindividual differences in sleep timing, duration, and morning or evening preference are associated with changes of circadian or sleep homeostatic processes or both. Molecular genetic correlates, including polymorphisms in clock genes, of some of these interindividual differences are emerging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据