4.6 Article

Association of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Elements with Specific Serotypes and Virulence Potential of Shiga Toxin-Producing Escherichia coli

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 80, 期 4, 页码 1411-1420

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.03018-13

关键词

-

向作者/读者索取更多资源

Shiga toxin-producing Escherichia coli (STEC) strains (n = 194) representing 43 serotypes and E. coli K-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n = 81) was further analyzed for subtype I-E cas and virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a short, combined array, CRISPR3-4. A total of 3,353 spacers were identified, representing 528 distinct spacers. The average length of a spacer was 32 bp. Approximately one-half of the spacers (54%) were unique and found mostly in strains of less common serotypes. Overall, CRISPR spacer contents correlated well with STEC serotypes, and identical arrays were shared between strains with the same H type (O26:H11, O103:H11, and O111:H11). There was no association identified between the presence of subtype I-E cas and virulence genes, but the total number of spacers had a negative correlation with potential pathogenicity (P < 0.05). Fewer spacers were found in strains that had a greater probability of causing outbreaks and disease than in those with lower virulence potential (P < 0.05). The relationship between the CRISPR-cas system and potential virulence needs to be determined on a broader scale, and the biological link will need to be established.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据