4.3 Article

Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00114.2005

关键词

microcirculation; regulation of skeletal muscle blood flow; functional hyperemia; active hyperemia

资金

  1. NIDDK NIH HHS [R01 DK 64668] Funding Source: Medline

向作者/读者索取更多资源

This study tested the hypothesis that chronically elevated oxidant stress contributes to impaired active hyperemia in skeletal muscle of obese Zucker rats (OZR) vs. lean Zucker rats (LZR) through progressive deteriorations in microvascular structure. Twelve-week-old LZR and OZR were given 4-hydroxy-2,2,6,6-tetramethylpiperidine1-oxyl ( tempol) in the drinking water for similar to 4 wk. Subsequently, perfusion of in situ gastrocnemius muscle was determined during incremental elevations in metabolic demand, while a contralateral skeletal muscle arteriole and the gastrocnemius muscle was removed to determine dilator reactivity, vessel wall mechanics, and microvessel density. Under control conditions, active hyperemia was impaired at all levels of metabolic demand in OZR, and this was correlated with a reduced microvessel density, increased arteriolar stiffness, and impaired dilator reactivity. Chronic tempol ingestion improved perfusion during moderate to high metabolic demand only and was associated with improved arteriolar reactivity and microvessel density; passive vessel mechanics were unaltered. Combined antioxidant therapy and nitric oxide synthase inhibition in OZR prevented much of the restored perfusion and microvessel density. In LZR, treatment with N-omega-nitro-L-arginine methyl ester (L-NAME) hydrochloride and hydralazine (to prevent hypertension) impaired active hyperemia, dilator reactivity, and microvessel density, although arteriolar distensibility was not altered. These results suggest that with the development of the metabolic syndrome, chronic reductions in nitric oxide bioavailability, in part via the scavenging actions of oxidative free radicals, contribute to a loss of skeletal muscle microvessels, leading to impaired muscle perfusion with elevated metabolic demand.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据