4.5 Article

Nuclear fusion in dense matter: Reaction rate and carbon burning

期刊

PHYSICAL REVIEW C
卷 72, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevC.72.025806

关键词

-

向作者/读者索取更多资源

In this paper we analyze the nuclear fusion rates among equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate that covers all cases. The parameters of this formula can be varied to take into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the C-12+C-12 fusion reaction. This reaction is important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovas, and in accreting neutron stars. The S factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S factor by using a recently developed parameter-free model for the nuclear interaction, taking into account the effects of the Pauli nonlocality. For illustration, we analyze the efficiency of carbon burning in a wide range of densities and temperatures of stellar matter with the emphasis on carbon ignition at densities rho greater than or similar to 10(9) g cm(-3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据