4.7 Article

Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood-brain barrier

期刊

JOURNAL OF INFECTION
卷 51, 期 2, 页码 150-156

出版社

W B SAUNDERS CO LTD
DOI: 10.1016/j.jinf.2004.09.001

关键词

Acanthamoeba; granulomatous amoebic encephalitis; mannose-binding protein; adhesion; cytotoxicity

向作者/读者索取更多资源

Objectives. Granulomatous amoebic encephalitis (GAE) is a serious human infection with fatal consequences, however, the pathogenic mechanisms associated with this disease remain unclear. Several lines of evidence suggest that haematogenous spread is a prerequisite for Acanthamoeba encephalitis but it is not clear how circulating amoebae cross the blood-brain barrier to gain entry into the central nervous system. Objectives of this study were to determine the effects of Acanthamoeba on the permeability of an in vitro blood-brain barrier model and factors contributing to these changes. Methods. Using human brain microvascular endothelial cells, an in vitro blood-brain barrier model was constructed in 24-well Transwell plates. Acanthamoeba (GAE isolate belonging to T1 genotype) or its conditioned media were used to determine permeability changes. Zymography assays were performed to characterise Acanthamoeba proteases. In addition, the ability of Acanthamoeba to bind brain microvascular endothelial cells was determined using adhesion assays. Results. We observed that Acanthamoeba produced an increase of more than 45% in the blood-brain barrier permeability. Acanthamoeba-conditioned media exhibited similar effects indicating Acanthamoeba-mediated blood-brain barrier permeability is contact-independent. Prior treatment of conditioned media with phenylmethyl sulfonyl fluoride (PMSF, serine protease inhibitor), abolished permeability changes indicating the role of serine proteases. Of interest, methyl alpha-D-mannopyranoside inhibited Acanthamoeba binding to human brain microvascular endothelial cells but had no effect on Acanthamoeba-mediated blood-brain barrier permeability. Zymography assays revealed that Acanthamoeba produced two major proteases, one of which was inhibited by PMSF (serine protease inhibitor) and the second with 1,10-phenanthroline (metalloprotease inhibitor). Conclusions. We have for the first time shown that Acanthamoeba produces human brain microvascular endothelial cells permeability, which can be blocked by PMSF. A metaltoprotease of approx. molecular weight of 150 kDa is produced by A. castellanii (GAE isolate belonging to T1 genotype) and its role in the disease is suggested. (C) 2004 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据