4.5 Article

Prosthetic heart valves' mechanical loading of red blood cells in patients with hereditary membrane defects

期刊

JOURNAL OF BIOMECHANICS
卷 38, 期 8, 页码 1557-1565

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2004.11.020

关键词

hemolysis; valve (disease); blood flow; erythrocyte; hereditary spherocytosis; hereditary elliptocytosis; prosthetic heart valves

向作者/读者索取更多资源

Implantable cardiovascular devices such as prosthetic heart valves (PHVs) are widely applied clinical tools. Upon implantation, the patient can suffer from anemia as a result of red cell destruction and hemolysis can be more relevant whenever the patient is also affected by red cell disorders in which erythrocytes are more susceptible to mechanical stress such as hereditary spherocytosis (HS) and hereditary elliptocytosis (HE). Considering the typical morphological alterations observed in HS and HE, a study of the influence of cell geometry on the distribution of the shear stress on red cells in biological fluids was carried out. A numerical simulation of the loading caused by Reynolds shear stresses on a prolate spheroid was performed, with the ellipticity of the particle as the independent parameter. The average shear stress on a particle in the blood stream was found to depend on the particle's geometry, besides the stress field produced by the prosthetic device. The relevance of an increasing particle ellipticity on the global load is discussed. The model was applied to erythrocytes from implanted patients with HE or HS, enabling to explain the occurrence of moderate or severe anemia, respectively. The clinical data support the relevance of the proposed global parameter as erythrocyte trauma predictor with regard to the fluid dynamics of artificial organs. (c) 2004 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据