4.5 Article

Single nucleotide polymorphisms in the human norepinephrine transporter gene affect expression, trafficking, antidepressant interaction, and protein kinase C regulation

期刊

MOLECULAR PHARMACOLOGY
卷 68, 期 2, 页码 457-466

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.105.011270

关键词

-

资金

  1. NHLBI NIH HHS [HL56693] Funding Source: Medline
  2. NIMH NIH HHS [F32-MH12896, MH58921] Funding Source: Medline

向作者/读者索取更多资源

The role of norepinephrine ( NE) in attention, memory, affect, stress, heart rate, and blood pressure implicates NE in psychiatric and cardiovascular disease. The norepinephrine transporter (NET) mediates reuptake of released catecholamines, thus playing a role in the limitation of signaling strength in the central and peripheral nervous systems. Nonsynonymous single nucleotide polymorphisms (SNPs) in the human NET (hNET) gene that influence transporter function can contribute to disease, such as the nonfunctional transporter, A457P, identified in orthostatic intolerance. Here, we examine additional amino acid variants that have been identified but not characterized in populations that include cardiovascular phenotypes. Variant hNETs were expressed in COS-7 cells and were assayed for protein expression and trafficking using cell-surface biotinylation and Western blot analysis, transport of radiolabeled substrate, antagonist interaction, and regulation through protein kinase C (PKC)-linked pathways by the phorbol ester beta-phorbol-12-myristate- 13-acetate. We observed functional perturbations in 6 of the 10 mutants studied. Several variants were defective in trafficking and transport, with the most dramatic effect observed for A369P, which was completely devoid of the fully glycosylated form of transporter protein, was retained intracellularly, and lacked any transport activity. Furthermore, A369P and another trafficking variant, N292T, impeded surface expression of hNET when coexpressed. F528C demonstrated increased transport and, remarkably, exhibited both insensitivity to down-regulation by PKC and a decrease in potency for the tricyclic antidepressant desipramine. These findings reveal functional deficits that are likely to compromise NE signaling in SNP carriers in the population and identify key regions of NET contributing to transporter biosynthesis, activity, and regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据