4.7 Article

Elevated tyrosine decarboxylase and tyramine hydroxycinnamoyltransferase levels increase wound-induced tyramine-derived hydroxycinnamic acid amide accumulation in transgenic tobacco leaves

期刊

PLANTA
卷 221, 期 6, 页码 904-914

出版社

SPRINGER
DOI: 10.1007/s00425-005-1484-x

关键词

feruloyltyramine; hydroxycinnamic acid amides; metabolic engineering; tyrosine decarboxylase; tyramine hydroxycinnamoyltransferase

向作者/读者索取更多资源

Feruloyltyramine (FT) and 4-coumaroyltyramine (4CT) participate in the defense of plants against pathogens through their extracellular peroxidative polymerization, which is thought to reduce cell wall digestibility. Hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110) and tyrosine decarboxylase (TYDC; EC 4.1.1.25) are purported to play key roles in the stress-induced regulation of tyramine-derived hydroxycinnamic acid amide (HCAAT) metabolism. Transgenic tobacco (Nicotiana tabacum cv. Xanthi) was engineered to constitutively express tobacco THT. A T-1 plant over-expressing THT was crossbred with T-1 tobacco expressing opium poppy TYDC2, to produce a T-2 line with elevated THT and TYDC activities compared with wild type plants. The effects of an independent increase in TYDC or THT activity, or a dual increase in both TYDC and THT on the cellular pools of HCAAT pathway intermediates and the accumulation of soluble and cell wall-bound FT and 4CT were examined. Increased TYDC activity resulted in a larger cellular pool of tyramine and lower levels of (L)-phenylalanine in transgenic leaves. In contrast, elevated THT activity reduced tyramine levels. HCAAT levels were low in healthy leaves, but were induced in response to wounding and accumulated around wound sites. Similarly, endogenous THT and TYDC activities were wound-induced. The rate of wound-induced HCAAT accumulation was highest in transgenic plants with elevated THT and TYDC activities showing that both enzymes exert control over the flux of intermediates involved in HCAAT biosynthesis under some conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据