4.6 Article

Large daily variation in 13C-enrichment of leaf-respired CO2 in two Quercus forest canopies

期刊

NEW PHYTOLOGIST
卷 167, 期 2, 页码 377-384

出版社

WILEY
DOI: 10.1111/j.1469-8137.2005.01475.x

关键词

carbon isotope ratio; dark respiration; forest canopies; fractionation; Quercus spp.

向作者/读者索取更多资源

(.) The use of the C-13 : C-12 isotopic ratio ( delta C-13) of leaf- respired CO2 to trace carbon fluxes in plants and ecosystems is limited by little information on temporal variations in delta C-13 of leaf dark- respired CO2 ( delta C-13(r)) under field conditions. (.) Here, we explored variability in delta C-13(r) and its relationship to key respiratory substrates from collections of leaf dark- respired CO2, carbohydrate extractions and gas exchange measurements over 24- h periods in two Quercus canopies. (.) Throughout both canopies, delta C-13(r) became progressively C-13- enriched during the photoperiod, by up to 7%, then C-13- depleted at night relative to the photoperiod. This cycle could not be reconciled with delta C-13 of soluble sugars ( delta C-13(55)), starch ( delta C-13(st)), lipids ( delta C-13(l)), cellulose ( delta C-13(c)) or with calculated photosynthetic discrimination (Delta). However, photoperiod progressive enrichment in delta C-13(r) was correlated with cumulative carbon assimilation ( r(2) = 0.91). (.) We concluded that there is considerable short- term variation in delta C-13(r) in forest canopies, that it is consistent with current hypotheses for C-13 fractionation during leaf respiration, that leaf carbohydrates cannot be used as surrogates for delta C-13(r), and that diel changes in leaf carbohydrate status could be used to predict changes in delta C-13(r) empirically. (c) New Phytologist ( 2005).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据