4.6 Article

A Combined System for Engineering Glycosylation Efficiency and Glycan Structure in Saccharomyces cerevisiae

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 79, 期 3, 页码 997-1007

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02817-12

关键词

-

资金

  1. Lonza, Ltd., Basel, Switzerland

向作者/读者索取更多资源

We describe a novel synthetic N-glycosylation pathway to produce recombinant proteins carrying human-like N-glycans in Saccharomyces cerevisiae, at the same time addressing glycoform and glycosylation efficiency. The Delta alg3 Delta alg11 double mutant strain, in which the N-glycans are not matured to their native high-mannose structure, was used. In this mutant strain, lipid-linked Man(3)GlcNAc(2) is built up on the cytoplasmic side of the endoplasmic reticulum, flipped by an artificial flippase into the ER lumen, and then transferred with high efficiency to the nascent polypeptide by a protozoan oligosaccharyltransferase. Protein-bound Man(3)GlcNAc(2) serves directly as a substrate for Golgi apparatus-targeted human N-acetylglucosaminyltransferases I and II. Our results confirmed the presence of the complex human-like N-glycan structure GlcNAc(2)Man(3)GlcNAc(2) on the secreted monoclonal antibody HyHEL-10. However, due to the interference of Golgi apparatus-localized mannosyltransferases, heterogeneity of N-linked glycans was observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据