4.8 Article

Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control

期刊

JOURNAL OF CLINICAL INVESTIGATION
卷 115, 期 8, 页码 2099-2107

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI24650

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL058091, R37 HL058091, HL58091, R29 HL058091] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM055792, R29 GM055792, GM55792] Funding Source: Medline

向作者/读者索取更多资源

Hypoxic vasodilation is a fundamental, highly conserved physiological response that requires oxygen and/or pH sensing coupled to vasodilation. While this process was first characterized more than 80 years ago, the precise identity and mechanism of the oxygen sensor and mediators of vasodilation remain uncertain. In support of a possible role for hemoglobin (Hb) as a sensor and effector of hypoxic vasodilation, here we show biochemical evidence that Hb exhibits enzymatic behavior as a nitrite reductase, with maximal NO generation rates occurring near the oxy-to-deoxy (R-to-T) allosteric structural transition of the protein. The observed rate of nitrite reduction by Hb deviates from second-order kinetics, and sigmoidal reaction progress is determined by a balance between 2 opposing chemistries of the heme in the R (oxygenated conformation) and T (deoxygenated conformation) allosteric quaternary structures of the Hb tetramer - the greater reductive potential of deoxyheme in the R state tetramer and the number of unligated deoxyheme sites necessary for nitrite binding, which are more plentiful in the T state tetramer. These opposing chemistries result in a maximal nitrite reduction rate when Hb is 40-60% saturated with oxygen (near the Hb P-50), an apparent ideal set point for hypoxia-responsive NO generation. These data suggest that the oxygen sensor for hypoxic vasodilation is determined by Hb oxygen saturation and quaternary structure and that the nitrite reductase activity of Hb generates NO gas under allosteric and pH control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据