4.7 Article

Efficient optimization of process parameters in shadow mask manufacturing using NNPLS and genetic algorithm

期刊

INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
卷 43, 期 15, 页码 3209-3230

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00958970500137167

关键词

process parameter optimization; genetic algorithm; shadow-mask manufacturing process; neural network partial least-squares (NNPLS); variable importance index

向作者/读者索取更多资源

A shadow mask, the primary component of a cathode ray tube (CRT), is used to prevent the outer edges of electron beams from hitting incorrect phosphor dots. It is fabricated by means of a photo-etching process consisting of a few hundred/thousand process parameters. A primary concern in the management of the process is to determine the optimal process parameter settings necessary to sustain the desired levels of product quality. The characteristics of the process, including a large number of process parameters and collinear observed data, make it difficult to accomplish the primary concern. To cope with the difficulties, a two-phase approach is employed that entails the identification of a few critical process parameters, followed by determination of the optimal parameter settings. The former is obtained through the operator's domain knowledge and the NNPLS-based prediction model built between process parameters and quality defects. The latter is obtained by solving an optimization problem using a genetic algorithm (GA). A comparative study shows that the proposed approach improves product quality greatly in the shadow-mask manufacturing process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据