4.6 Article

Direct Conversion of Xylan to Ethanol by Recombinant Saccharomyces cerevisiae Strains Displaying an Engineered Minihemicellulosome

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 78, 期 11, 页码 3837-3845

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.07679-11

关键词

-

资金

  1. Department of Chemical and Biomolecular Engineering at the University of Illinois at Urbana-Champaign
  2. East China University of Science and Technology
  3. Chinese Scholarship Council [2008674002]

向作者/读者索取更多资源

Arabinoxylan is a heteropolymeric chain of a beta-1,4-linked xylose backbone substituted with arabinose residues, representing a principal component of plant cell walls. Here we developed recombinant Saccharomyces cerevisiae strains as whole-cell biocatalysts capable of combining hemicellulase production, xylan hydrolysis, and hydrolysate fermentation into a single step. These strains displayed a series of uni-, bi-, and trifunctional minihemicellulosomes that consisted of a miniscaffoldin (CipA3/CipA1) and up to three chimeric enzymes. The miniscaffoldin derived from Clostridium thermocellum contained one or three cohesin modules and was tethered to the cell surface through the S. cerevisiae a-agglutinin adhesion receptor. Up to three types of hemicellulases, an endoxylanase (XynII), an arabinofuranosidase (AbfB), and a beta-xylosidase (XlnD), each bearing a C-terminal dockerin, were assembled onto the miniscaffoldin by high-affinity cohesin-dockerin interactions. Compared to uni- and bifunctional minihemicellulosomes, the resulting quaternary trifunctional complexes exhibited an enhanced rate of hydrolysis of arabinoxylan. Furthermore, with an integrated D-xylose-utilizing pathway, the recombinant yeast displaying the bifunctional minihemicellulosome CipA3-XynII-XlnD could simultaneously hydrolyze and ferment birchwood xylan to ethanol with a yield of 0.31 g per g of sugar consumed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据