4.6 Article

Rapid Detection of Viable Salmonellae in Produce by Coupling Propidium Monoazide with Loop-Mediated Isothermal Amplification

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 77, 期 12, 页码 4008-4016

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00354-11

关键词

-

资金

  1. Center for Produce Safety at the University of California, Davis [SA7498]

向作者/读者索取更多资源

Recent outbreaks linked to Salmonella-contaminated produce heightened the need to develop simple, rapid, and accurate detection methods, particularly those capable of determining cell viability. In this study, we examined a novel strategy for the rapid detection and quantification of viable salmonellae in produce by coupling a simple propidium monoazide sample treatment with loop-mediated isothermal amplification (PMA-LAMP). We first designed and optimized a LAMP assay targeting Salmonella. Second, the performance of PMA-LAMP for detecting and quantifying viable salmonellae was determined. Finally, the assay was evaluated in experimentally contaminated produce items (cantaloupe, spinach, and tomato). Under the optimized condition, PMA-LAMP consistently gave negative results for heat-killed Salmonella cells with concentrations up to 10(8) CFU/ml (or CFU/g in produce). The detection limits of PMA-LAMP were 3.4 to 34 viable Salmonella cells in pure culture and 6.1 x 10(3) to 6.1 x 10(4) CFU/g in spiked produce samples. In comparison, PMA-PCR was up to 100-fold less sensitive. The correlation between LAMP time threshold (TT) values and viable Salmonella cell numbers was high (R-2 = 0.949 to 0.993), with a quantification range (10(2) to 10(5) CFU/reaction in pure culture and 10(4) to 10(7) CFU/g in produce) comparable to that of PMA in combination with quantitative real-time PCR (PMA-qPCR). The complete PMA-LAMP assay took about 3 h to complete when testing produce samples. In conclusion, this rapid, accurate, and simple method to detect and quantify viable Salmonella cells in produce may present a useful tool for the produce industry to better control potential microbial hazards in produce.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据