4.6 Article

Device model for the operation of polymer/fullerene bulk heterojunction solar cells

期刊

PHYSICAL REVIEW B
卷 72, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.085205

关键词

-

向作者/读者索取更多资源

We have developed a numerical device model that consistently describes the current-voltage characteristics of polymer:fullerene bulk heterojunction solar cells. Bimolecular recombination and a temperature- and field-dependent generation mechanism of free charges are incorporated. It is demonstrated that in poly[2-methoxy-5-(3('),7(')-dimethyloctyloxy)-p-phenylene vinylene]- (OC1C10-PPV-) and [6,6]-phenyl C-61-butyric acid methyl ester- (PCBM-) (1:4 wt. %) based solar cells space-charge effects only play a minor role, leading to a relatively constant electric field in the device. Furthermore, at short-circuit conditions only 7% of all free carriers are lost due to bimolecular recombination. The model predicts that an increased hole mobility together with a reduction of the acceptor strength of 0.5 eV will lead to a maximum attainable efficiency of 5.5% in the PPV/PCBM-based solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据