4.6 Article

A new population of human adult dental pulp stem cells: A useful source of living autologous fibrous bone tissue (LAB)

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 20, 期 8, 页码 1394-1402

出版社

WILEY
DOI: 10.1359/JBMR.050325

关键词

dental pulp; adult stem cells; fibrous bone; osteoblasts; differentiation

向作者/读者索取更多资源

Introduction: Recently it has been reported that human dental pulp stem cells (DPSCs) are detectable, in humans, only up to the age of 30 years and that they are able to produce in vitro only sporadic calcified nodules and to form, after transplantation in vivo, a mineralized tissue. Materials and Methods: Stem cells, derived from human adult dental pulp of healthy subjects 30-45 years of age, were cultured, and cells were selected using a FACSorter. Light microscope, histochemistry, immunofluorescence, and RT-PCR analyses were performed to study both stem and differentiating cells. Results and Conclusions: A new c-kit(+)/CD34(+)/CD45(-) cell population of stromal bone producing cells (SBP/ DPSCs) has been selected by FACSorting, expanded, and cultured. These SBP/DPSCs are highly clonogenic and, in culture, differentiate into osteoblast precursors (CD44(+)/RUNX-2(+)), still capable of self-renewing, and in osteoblasts, producing, in vitro, a living autologous fibrous bone (LAB) tissue. This new-formed tissue is markedly positive for several antibodies for bone, including osteonectin, bone sialoprotein, osteocalcin, fibronectin, collagen III, and bone alkaline phosphatase (BALP). Cells producing LAB can be stored at -80 degrees C for a long period of time and are an extraordinary source of osteoblasts and mineralized fibrous bone tissue. In this study, we also showed that, in aged humans, stem cells can be detected from their pulps. The produced LAB is a fibrous bone tissue resembling the human bone during mineralization, with an external layer formed by osteoblasts markedly positive for osteocalcin. This newly formed tissue constitute an ideal source of osteoblasts and mineralized tissue for bone regeneration. In fact, after in vivo transplantation into immunocompromised rats, LAB formed lamellar bone containing osteocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据