4.6 Article

Improvement of Glyphosate Resistance through Concurrent Mutations in Three Amino Acids of the Ochrobactrum 5-Enopyruvylshikimate-3-Phosphate Synthase

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 77, 期 23, 页码 8409-8414

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.05271-11

关键词

-

资金

  1. Shanghai National Science Foundation [11ZR14324000]
  2. Shanghai Municipal Committee of Agriculture [2008-7-5, 2009-6-4]
  3. Shanghai Academy of Agricultural Sciences [2009-19]

向作者/读者索取更多资源

A mutant of 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified after four rounds of DNA shuffling and screening. Its ability to restore the growth of the mutant ER2799 cell on an M9 minimal medium containing 300 mM glyphosate led to its identification. The mutant had mutations in seven amino acids: E145G, N163H, N267S, P318R, M377V, M425T, and P438L. Among these mutations, N267S, P318R, and M425T have never been previously reported as important residues for glyphosate resistance. However, in the present study they were found by site-directed mutagenesis to collectively contribute to the improvement of glyphosate tolerance. Kinetic analyses of these three mutants demonstrated that the effectiveness of these three individual amino acid alterations on glyphosate tolerance was in the order P318R > M425T > N267S. The results of the kinetic analyses combined with a three-dimensional structure modeling of the location of P318R and M425T demonstrate that the lower hemisphere's upper surface is possibly another important region for glyphosate resistance. Furthermore, the transgenic Arabidopsis was obtained to confirm the potential of the mutant in developing glyphosate-resistant crops.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据