4.6 Article

Tunneling current and emission spectrum of a single-electron transistor under optical pumping

期刊

PHYSICAL REVIEW B
卷 72, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.085334

关键词

-

向作者/读者索取更多资源

Theoretical studies of the tunneling current and emission spectrum of a single electron transistor (SET) under optical pumping are presented. The calculation is performed via Keldysh Green's function method within the Anderson model with two energy levels. It is found that holes in the quantum dot (QD) created by optical pumping lead to new channels for the electron tunneling from emitter to collector. As a consequence, an electron can tunnel through the QD via additional channels, characterized by the exciton, trion, and biexciton states. It is found that the tunneling current as a function of the gate voltage displays a series of sharp peaks and the spacing between these peaks can be used to determine the exciton binding energy as well as the electron-electron Coulomb repulsion energy. In addition, we show that the single-photon emission associated with the electron-hole recombination in the exciton complexes formed in the QD can be controlled both electrically and optically.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据