4.7 Article

Synthesis of monodisperse fluorescent core-shell silica particles using a modified Stober method for imaging individual particles in dense colloidal suspensions

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 288, 期 1, 页码 114-123

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2005.02.073

关键词

silica particle; Stober method; sodium dodecyl sulfate (SDS); aggregation mechanism; internal structure; confocal microscopy

向作者/读者索取更多资源

Core-shell silica particles, with a diameter of 1.5 mu m, containing a dye fluorescein isothiocyanate (FITC), are synthesized by the hydrolysis and condensation of tetraethylorthosilicate (TEOS). Sodium dodecyl sulfate (SDS) is added to synthesize fluorescent core particles with the diameter of approximately 1 mu m. In the addition of SIDS, the surface charge reduced by counterions (Na+) of the surfactant leads to a higher degree of aggregation of the primary particles and the formation of larger secondary particles. The particle growth kinetics confirms the aggregation growth model for the synthesis of monodisperse silica particles, and also shows the dependence of final particle size on colloidal stability resulting from the addition of SDS. Light and X-ray scattering data reveal that the final particles have compactly packed structures with smooth surfaces. The seeded growth technique is then used to form a silica shell layer on the fluorescent core. The added amount of water and NH4OH has significant effects on shell formation. Finally, the final core-shell silica particles are modified by chemisorption of octadecanol at the surface to be dispersed in organic solvents. Octadecyl-coated silica particles are sterically stabilized in silica index-matching solvents such as chloroform and hexadecane to directly image separate particles using confocal microscopy. In chloroform, the organophilic silica particles disperse well, whereas in hexadecane they form a volume-filling gel structure at room temperature. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据