4.6 Article

The cathepsin B death pathway contributes to TNF plus IFN-γ-mediated human endothelial injury

期刊

JOURNAL OF IMMUNOLOGY
卷 175, 期 3, 页码 1858-1866

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.175.3.1858

关键词

-

资金

  1. NHLBI NIH HHS [HL-62188] Funding Source: Medline

向作者/读者索取更多资源

Vascular endothelial cells are primary targets of cytokine-induced cell death leading to tissue injury. We previously reported that TNF in combination with LY294002, a PI3K inhibitor, activates caspase-independent cell death initiated by cathepsin B (Cat B) in HUVEC. We report that TNF in the presence of IFN-gamma activates Cat B as well as a caspase death pathway in both HUVEC and human dermal microvascular endothelial cells, but only activates caspase-mediated death in HeLa cells and human embryonic kidney (HEK)293 cells. Like LY294002, IFN-gamma triggers Cat B release from lysosomes in HUVEC. Cat B-triggered death involves mitochondria, indicated by release of cytochrome c, loss of mitochondrial membrane potential and inhibition of death by overexpressed BcI-2. Cat B effects on mitochondria do not depend upon Bid cleavage. Unexpectedly, overexpression of a dominant negative mutated form of Fas-associated death domain protein (FADD), which blocks caspase activation by TNF, potentiates TNF activation of Cat B and cell death in HUVEC. Similarly, mutant Jurkat cells lacking FADD also show increased susceptibility to TNF-induced Cat B-dependent cell death. These observations suggest that the Cat B death pathway is cell type-specific and may contribute to cytokine-mediated human tissue injury and to the embryonic lethality of FADD gene disruption in mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据