4.6 Article

Transverse spin-orbit force in the spin Hall effect in ballistic semiconductor wires -: art. no. 075335

期刊

PHYSICAL REVIEW B
卷 72, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.075335

关键词

-

向作者/读者索取更多资源

We introduce the spin- and momentum-dependent force operator, which is defined by the Hamiltonian of a clean semiconductor quantum wire with homogeneous Rashba spin-orbit (SO) coupling attached to two ideal (i.e., free of spin and charge interactions) leads. Its expectation value in the spin-polarized electronic wave packet injected through the leads explains why the center of the packet gets deflected in the transverse direction. Moreover, the corresponding spin density will be dragged along the transverse direction to generate an out-of-plane spin accumulation of opposite signs on the lateral edges of the wire, as expected in the phenomenology of the spin Hall effect, when spin-up arrow and spin-down arrow polarized packets (mimicking the injection of conventional unpolarized charge current) propagate simultaneously through the wire. We also demonstrate that spin coherence of the injected spin-polarized wave packet will gradually diminish (thereby diminishing the force) along the SO coupled wire due to the entanglement of spin and orbital degrees of freedom of a single electron, even in the absence of any impurity scattering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据