4.7 Article

Structure of hard-sphere fluid and precursor structures to crystallization

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1992475

关键词

-

向作者/读者索取更多资源

The structural origin of the commonly observed split second peak of the radial distribution function of a supercooled or glassy liquid is examined in this work using the hard-sphere fluid as an example. A novel approach to the analysis of the microscopic structure of a fluid is described, which permits the decomposition of both the radial distribution function and bond-angle distribution function of a system of particles into contributions from a small number of ring structures. The method uses a modified shortest-path definition of rings appropriate to the analysis of the medium-range structure of dense systems. It is shown that the split peak is an indicator of the emergence of precursor structures to crystal formation. The origin of the split peak provides a structural link between fluid and crystalline phases and our results suggest that it is neither a structural feature peculiar to glassy phases nor a smooth structural continuation of the stable-fluid phase. This structural feature of simple glassy systems is more appropriately described as a signifier of the frustration of emerging crystalline order in a fluid. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据