4.4 Article

Dissection of bidirectional synaptic plasticity into saturable unidirectional processes

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 94, 期 2, 页码 1565-1573

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00047.2005

关键词

-

向作者/读者索取更多资源

In populations of synapses, overall synaptic strength can undergo either a net strengthening (long-term potentiation) or weakening (long-term depression). These phenomena have distinct induction pathways, but the functional outcome is usually measured as a single lumped quantity. In hippocampal CA3-CA1 synapses, we took two approaches to study the activity dependence of each phenomenon in isolation. First, we selectively blocked one process by applying kinase or phosphatase inhibitors known, respectively, to block potentiation or depression. Second, we saturated depression or potentiation and examined the activity dependence of the converse process. The resulting unidirectional learning rules could be recombined to give a well-known bidirectional frequency-dependent learning rule under the assumption that when both pathways are activated kinases dominate, resulting in potentiation. Saturation experiments revealed an additional process in which potentiated synapses can be locked at high strength. Saturability of the components of plasticity implies that the amount of plasticity contributed by each pathway depends on the initial level of strength of the synapses. Variation in the distribution of initial synaptic strengths predicts a form of metaplasticity and can account for differences in learning rules observed under several physiological and genetic manipulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据