4.7 Article

The use of piezoelectric ceramics for electric power generation within orthopedic implants

期刊

IEEE-ASME TRANSACTIONS ON MECHATRONICS
卷 10, 期 4, 页码 455-461

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2005.852482

关键词

orthopedics; piezoelectric (PZT) ceramics; piezoelectric (PZT) materials; power generation

向作者/读者索取更多资源

This paper presents the results of tests that demonstrate the feasibility of using piezoelectric (PZT) ceramics to generate in vivo electrical energy for orthopedic implants. Sensors encapsulated within implants could provide in vivo diagnostic capabilities such as the monitoring of implant duty (i.e., walking) cycle, detecting abnormally asymmetric or high forces, sensing misalignment and early loosening, and early detection of wear. Early diagnosis of abnormalities or impending failure is critical to minimize patient harm. However, the routine use of sensors and microprocessors embedded within orthopedic implants for diagnostic and monitoring purposes has been limited by the lack of a long-term self-contained power source capable of lasting the expected 20-year implant lifetimes. By embedding PZT materials within orthopedic implants, a small amount of the mechanical energy generated during normal physica activity can be converted into useful electrical energy. This in vivo energy source can power embedded microprocessors and sensors for a broad range of biomedical uses. The current work investigates the application of this technology to total knee replacement (TKR) implants, but it is applicable to many other implanted biomedical devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据