4.7 Review

Why dietary restriction substantially increases longevity in animal models but won't in humans

期刊

AGEING RESEARCH REVIEWS
卷 4, 期 3, 页码 339-350

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.arr.2005.06.001

关键词

aging; caloric restriction; primate life extension; reproductive effort; life history trade-offs; evolution of senescence; maximum longevity

向作者/读者索取更多资源

Caloric restriction (CR) extends maximum longevity and slows aging in mice, rats, and numerous non-mammalian taxa. The apparent generality of the longevity-increasing effects of CR has prompted speculation that similar results could be obtained in humans. Longevity, however, is not a trait that exists in a vacuum; it evolves as part of a life history and the physiological mechanisms that determine longevity are undoubtedly complex. Longevity is intertwined with reproduction and there is a cost to reproduction. The impact of this cost on longevity can be age-independent or age-dependent. Given the complexity of the physiology underlying reproductive costs and other mechanisms affecting life history, it is difficult to construct a simple model for the relationship between the particulars of the physiology involved and patterns of mortality. Consequently, we develop a hypothesis-neutral model describing the relationship between diet and longevity. Applying this general model to the special case of human longevity and diet indicates that the benefits of caloric restriction in humans would be quantitatively small. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据