4.6 Article

Inverse proximity effect in superconductor-ferromagnet structures:: From the ballistic to the diffusive limit -: art. no. 064524

期刊

PHYSICAL REVIEW B
卷 72, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.064524

关键词

-

向作者/读者索取更多资源

The inverse proximity effect, i.e., the induction of a magnetic moment in the superconductor, in superconductor-ferromagnet (S/F) junctions is studied theoretically. We present a microscopic approach which combines a model Hamiltonian with elements of the well-established quasiclassical theory. With its help we study systems with arbitrary degree of disorder, interface transparency, and thickness of the layers. In the diffusive limit we recover the result of previous works: the direction of the induced magnetization M is opposite to the one of the F layer. However, we show that in the ballistic case the sign of M may be positive or negative depending on the quality of the interface and thickness of the layers. We show that, regardless of its sign, the penetration length of the magnetic moment into the superconductor is of the order of the superconductor coherence length, which demonstrates that the effect has a superconducting origin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据