4.8 Article

Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase

期刊

WATER RESEARCH
卷 39, 期 13, 页码 3012-3020

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2005.05.002

关键词

cake filtration; electrodewatering; electroosmosis; activated sludge; streaming potential; surface charge

向作者/读者索取更多资源

Activated sludge is known to be poorly dewaterable due to its high surface charge density and the extreme solids compressibility, even after polyelectrolyte conditioning. The application of an electric field during pressure dewatering (PDW) of sludge can enhance the dewaterability by the electroosmosis effect. A comparative study was conducted to investigate the additional effect of an electric field, applied during the expression phase, on the dewatering course of polyelectrolyte conditioned sludge, compared to mere PDW. It was found that the application of an electric field markedly improved the dewatering kinetics for all sludge samples, regardless of the conditioning treatment. Although the conditioning polyelectrolyte characteristics and dose had a major effect on the PDW of sludge, the conditioning history did not have a significant effect on the electroosmotic water transport efficiency during the sludge expression phase. By means of on-line streaming potential measurements and fractionated filtrate electrophoretic mobility measurements, it could be demonstrated that even at high polyelectrolyte doses, leading to positively charged sludge flocs, negative surface charges were still present inside the sludge matrix. During the expression of the sludge cake, when liquid is forced to move through the floc inside pores, these negative surface charges hampered PDW, but enhanced electroosmotic dewatering. Electroosmosis is therefore an appropriate technique to remove the water fraction that is associated with these negative surface charges. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据