4.5 Article

The self-excitation damping ratio: A chatter criterion for time-domain milling simulations

出版社

ASME
DOI: 10.1115/1.1948393

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [GR/S49858/01] Funding Source: researchfish

向作者/读者索取更多资源

Regenerative chatter is known to be a key factor that limits the productivity of high speed machining. Consequently, a great deal of research has focused on developing predictive models of milling dynamics, to aid engineers involved in both research and manufacturing practice. Time-domain models suffer from being computationally intensive, particularly when they are used to predict the boundary of chatter stability, when a large number of simulation runs are required under different milling conditions. Furthermore, to identify the boundary of stability each simulation must run for sufficient time for the chatter effect to manifest itself in the numerical data, and this is a major contributor to the inefficiency of the chatter prediction process. In the present article, a new chatter criterion is proposed for time-domain milling simulations, that aims to overcome this drawback by considering the transient response of the modeled behavior rather than the steady-state response. Using a series of numerical investigations, it is shown that in many cases the new criterion can enable the numerical prediction to be computed more than five times faster than was previously possible. In addition, the analysis yields greater detail concerning the nature of the chatter vibrations, and the degree of stability that is observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据