4.5 Article

How can teleostean inner ear hair cells maintain the proper association with the accreting otolith?

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 488, 期 3, 页码 331-341

出版社

WILEY
DOI: 10.1002/cne.20578

关键词

labyrinth; auditory system; H+-ATPase; H+-selective microelectrode; hearing; vestibule

向作者/读者索取更多资源

The perception of equilibrium and sound in fish depends on the deflection of hair bundles of hair cell by the otolith. However, the accreting nature of teleostean otoliths poses a problem for maintenance of proper contact between the hair bundle and the otolith surface. Immunocytochemical staining localizes abundant proton-secreting H+-ATPase in the apical membrane of the hair cells. The H+-ATPase-mediated proton secretion into the endolymph causes an approximately 0.4-unit pH decrease, which was quantified by an H+-selective microelectrode. Thus, the hair cells maintain the proper distance from the otolith by neutralizing the alkaline endolymph to retard CaCO3, deposition on the otolith opposite the sensory macula. Carbonic anhydrase, which hydrolyses CO2 and produces HCO3- and H+, was also localized in the hair cells. Ionocytes showed prominent immunostaining of carbonic anhydrase and Na+-K+-ATPase, indicating its role in transepithelial transport of HCO3- across the membranous labyrinth into the endolymph. lonocytes form a ring closely surrounding the sensory macula. HCO3- secreted from the ionocytes may serve as a barrier to neutralize H+ diffused from the sensory macula while keeping the endolymph alkaline outside the sensory maculae The ingenious arrangement of ionocytes and hair cells results in a unique sculptured groove, which is a common feature on the proximal surface of all teleostean otoliths. (c) 2005 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据