4.6 Article

Physical limits of the ballistic and nonballistic spin-field-effect transistor: Spin dynamics in remote-doped structures

期刊

PHYSICAL REVIEW B
卷 72, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.075318

关键词

-

向作者/读者索取更多资源

We investigate the spin dynamics and relaxation in remotely doped two dimensional electron systems where the dopants lead to random fluctuations of the Rashba spin-orbit coupling. Due to the resulting random-spin precession, the spin-relaxation time is limited by the strength and spatial scale of the random contribution to the spin-orbit coupling. We concentrate on the role of the randomness for two systems where the direction of the spin-orbit field does not depend on the electron momentum, the spin-field-effect transistor with balanced Rashba and Dresselhaus couplings and the (011) quantum well. Both of these systems are considered as promising for the spintronics applications, because the suppression of the Dyakonov-Perel' mechanism there makes the realization of a spin-field-effect transistor in the diffusive regime possible. We demonstrate that the spin relaxation through the randomness of spin-orbit coupling imposes important physical limitations on the operational properties of these devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据