4.6 Article

Engineering of 2,3-Butanediol Dehydrogenase To Reduce Acetoin Formation by Glycerol-Overproducing, Low-Alcohol Saccharomyces cerevisiae

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 75, 期 10, 页码 3196-3205

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02157-08

关键词

-

资金

  1. Ministry of Education and Science [BMC-2003-09606]

向作者/读者索取更多资源

Engineered Saccharomyces cerevisiae strains overexpressing GPD1, which codes for glycerol-3-phosphate dehydrogenase, and lacking the acetaldehyde dehydrogenase Ald6 display large-scale diversion of the carbon flux from ethanol toward glycerol without accumulating acetate. Although GPD1 ald6 strains have great potential for reducing the ethanol contents in wines, one major side effect is the accumulation of acetoin, having a negative sensory impact on wine. Acetoin is reduced to 2,3-butanediol by the NADH-dependent 2,3-butanediol dehydrogenase Bdh1. In order to investigate the influence of potential factors limiting this reaction, we overexpressed BDH1, coding for native NADH-dependent Bdh1, and the engineered gene BDH1 221,222,223, coding for an NADPH-dependent Bdh1 enzyme with the amino acid changes 221 EIA 223 to 221 SRS 223, in a glycerol-overproducing wine yeast. We have shown that both the amount of Bdh1 and the NADH availability limit the 2,3-butanediol dehydrogenase reaction. During wine fermentation, however, the major limiting factor was the level of synthesis of Bdh1. Consistent with this finding, the overproduction of native or engineered Bdh1 made it possible to redirect 85 to 90% of the accumulated acetoin into 2,3-butanediol, a compound with neutral sensory characteristics. In addition, the production of diacetyl, a compound causing off-flavor in alcoholic beverages, whose production is increased in glycerol-overproducing yeast cells, was decreased by half. The production of higher alcohols and esters, which was slightly decreased or unchanged in GPD1 ald6 cells compared to that in the control cells, was not further modified in BDH1 cells. Overall, rerouting carbons toward glycerol and 2,3-butanediol represents a new milestone in the engineering of a low-alcohol yeast with desirable organoleptic features, permitting the decrease of the ethanol contents in wines by up to 3 degrees.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据