4.6 Article

The Unique Branching Patterns of Deinococcus Glycogen Branching Enzymes Are Determined by Their N-Terminal Domains

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 75, 期 5, 页码 1355-1362

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02141-08

关键词

-

向作者/读者索取更多资源

Glycogen branching enzymes (GBE) or 1,4-alpha-glucan branching enzymes (EC 2.4.1.18) introduce alpha-1,6 branching points in alpha-glucans, e.g., glycogen. To identify structural features in GBEs that determine their branching pattern specificity, the Deinococcus geothermalis and Deinococcus radiodurans GBE (GBE(Dg) and GBE(Dr), respectively) were characterized. Compared to other GBEs described to date, these Deinococcus GBEs display unique branching patterns, both transferring relatively short side chains. In spite of their high amino acid sequence similarity (88%) the D. geothermalis enzyme had highest activity on amylose while the D. radiodurans enzyme preferred amylopectin. The side chain distributions of the products were clearly different: GBEDg transferred a larger number of smaller side chains; specifically, DP5 chains corresponded to 10% of the total amount of transferred chains, versus 6.5% for GBE(Dr). GH13-type GBEs are composed of a central (beta/alpha) barrel catalytic domain and an N-terminal and a C-terminal domain. Characterization of hybrid Deinococcus GBEs revealed that the N2 modules of the N domains largely determined substrate specificity and the product branching pattern. The N2 module has recently been annotated as a carbohydrate binding module (CBM48). It appears likely that the distance between the sugar binding subsites in the active site and the CBM48 subdomain determines the average lengths of side chains transferred.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据