4.3 Review

Regulation of energy balance by peptides:: A review

期刊

CURRENT PROTEIN & PEPTIDE SCIENCE
卷 6, 期 4, 页码 327-353

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1389203054546343

关键词

anabolic peptides; catabolic peptides; food intake; body weight; metabolic rate; heat loss; body temperature; hypothalamus

向作者/读者索取更多资源

Regulation of energy balance consists of two intertwined circuitries: food intake - metabolic rate - body weight, vs. metabolic rate - heat loss - body temperature. Metabolic rate serves interaction between the two. Some peptides influence individual components of energy homeostasis, without having coordinated anabolic or catabolic properties. Anabolic and catabolic peptides function with redundancy, and also show specific features. They all influence ingestive behavior vs. metabolic rate and temperature, but do not necessarily act directly at central thermoregulatory pathways. Most of them after metabolic rate (but not heat loss) through the ventromedial nucleus, while consequent moderate changes in thermal signals can influence function of the preoptic/anterior hypothalamic region and initiate compensating regulatory steps to restore temperature. Thus, besides ingestion, these peptides influence metabolic rate, whereas the passive temperature changes will only be obvious as long as environmental circumstances allow. Other substances cause coordinated central regulatory changes resembling fever (e.g. cholecystokinin), anapyrexia, or cold-defense: they primarily affect body temperature, and then the temperature-dependent changes in catabolic/anabolic peptide functions alter feeding behavior. Such arrangement can secure relative independence of the two regulatory circles, allowing for minimization of depression in metabolic rate and body temperature during starvation (despite elevated anabolic activity), or for increased food intake with lack of hypothermia in cold adaptation (despite high anabolic activity), or for normal body temperature in overfed states (despite enhanced catabolic activity), etc. However, the independence is relative since the two systems interact in the overall regulation of energy homeostasis: neuropeptides influence body temperature and temperature modifies peptide actions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据