4.6 Article

Studies of the Production of Fungal Polyketides in Aspergillus nidulans by Using Systems Biology Tools

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 75, 期 7, 页码 2212-2220

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01461-08

关键词

-

资金

  1. Villum Kann Rasmussen and Lundbeck Foundations
  2. Danish Research Agency for Technology and Production

向作者/读者索取更多资源

Many filamentous fungi produce polyketide molecules with great significance as human pharmaceuticals; these molecules include the cholesterol-lowering compound lovastatin, which was originally isolated from Aspergillus terreus. The chemical diversity and potential uses of these compounds are virtually unlimited, and it is thus of great interest to develop a well-described microbial production platform for polyketides. Using genetic engineering tools available for the model organism Aspergillus nidulans, we constructed two recombinant strains, one expressing the Penicillium griseofulvum 6-methylsalicylic acid (6-MSA) synthase gene and one expressing the 6-MSA synthase gene and overexpressing the native xylulose-5-phosphate phosphoketolase gene (xpkA) for increasing the pool of polyketide precursor levels. The physiology of the recombinant strains and that of a reference wild-type strain were characterized on glucose, xylose, glycerol, and ethanol media in controlled bioreactors. Glucose was found to be the preferred carbon source for 6-MSA production, and 6-MSA concentrations up to 455 mg/liter were obtained for the recombinant strain harboring the 6-MSA gene. Our findings indicate that overexpression of xpkA does not directly improve 6-MSA production on glucose, but it is possible, if the metabolic flux through the lower part of glycolysis is reduced, to obtain quite high yields for conversion of sugar to 6-MSA. Systems biology tools were employed for in-depth analysis of the metabolic processes. Transcriptome analysis of 6-MSA-producing strains grown on glucose and xylose in the presence and absence of xpkA overexpression, combined with flux and physiology data, enabled us to propose an xpkA-msaS interaction model describing the competition between biomass formation and 6-MSA production for the available acetyl coenzyme A.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据