4.8 Article

Tiling array-driven elucidation of transcriptional structures based on maximum-likelihood and Markov models

期刊

PLANT JOURNAL
卷 43, 期 4, 页码 611-621

出版社

WILEY
DOI: 10.1111/j.1365-313X.2005.02470.x

关键词

tiling array; gene expression; gene prediction; non-protein-coding gene; Arabidopsis; bioinformatics

向作者/读者索取更多资源

Tiling arrays of high-density oligonucleotide probes spanning the entire genome are powerful tools for the discovery of new genes. However, it is difficult to determine the structure of the spliced product of a structurally unknown gene from noisy array signals only. Here we introduce a statistical method that estimates the precise splicing points and the exon/intron structure of a structurally unknown gene by maximizing the odds or the ratio of posterior probabilities of the structure under the observation of array signal intensities and nucleic acid sequences. Our method more accurately predicted the gene structures than the simple threshold-based method, and more correctly estimated the expression values of structurally unknown genes than the window-based method. It was observed that the Markov model contributed to the precision of splice points, and that the statistical significance of expression (P-value) represented the reliability of the estimated gene structure and expression value well. We have implemented the method as a program ARTADE (ARabidopsis Tiling Array-based Detection of Exons) and applied it to the Arabidopsis thaliana whole-genome array data analysis. The database of the predicted results and the ARTADE program are available at http://omicspace.riken.jp/ARTADE/.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据