4.5 Article

Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae)

期刊

JOURNAL OF PHYCOLOGY
卷 41, 期 4, 页码 840-850

出版社

WILEY
DOI: 10.1111/j.1529-8817.2005.00105.x

关键词

Antarctic diatoms; flow cytometry; irradiance acclimation; nutrient limitation; oxidative stress; photosynthesis; pigments; UVA radiation; UVB radiation; viability

向作者/读者索取更多资源

The effects of high PAR (400-700 nm), UVA (315-400 nm), and UVB (280-315 nm) radiation on viability and photosynthesis were investigated for Chaetoceros brevis Schutt. This Antarctic marine diatom was cultivated under low, medium, and high irradiance and nitrate, phosphate, silicate, and iron limitation before exposure to a simulated surface irradiance (SSI) treatment, with and without UVB radiation. Light-harvesting and protective pigment composition and PSII parameters were determined before SSI exposure, whereas viability was measured by flow cytometry in combination with a viability stain after the treatment. Recovery of PSII efficiency was measured after 20 h in dim light in a separate experiment. In addition, low and high irradiance acclimated cells were exposed outdoors for 4 h to assess the effects of natural PAR, UVA, and UVB on viability. Low irradiance acclimated cells were particularly sensitive to photo induced viability loss, whereas no viability loss was found after acclimation to high irradiance. Furthermore, nutrient limitation reduced sensitivity to photo induced viability loss, relative to nutrient replete conditions. No additional viability loss was found after UVB exposure. Sunlight exposed cells showed no additional UVB effect on viability, whereas UVA and PAR significantly reduced the viability of low irradiance acclimated cells. Recovery of PSII function was nearly complete in cultures that survived the light treatments. Increased resistance to high irradiance coincided with an increased ratio between protective- and light-harvesting pigments before the SSI treatment, demonstrating the importance of nonphotochemical quenching by diatoxanthin for survival of near-surface irradiance. We conclude that a sudden transfer to high irradiance can be fatal for low irradiance acclimated C. brevis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据