4.8 Article

Nova regulates brain-specific splicing to shape the synapse

期刊

NATURE GENETICS
卷 37, 期 8, 页码 844-852

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ng1610

关键词

-

向作者/读者索取更多资源

Alternative RNA splicing greatly increases proteome diversity and may thereby contribute to tissue-specific functions. We carried out genome-wide quantitative analysis of alternative splicing using a custom Affymetrix microarray to assess the role of the neuronal splicing factor Nova in the brain. We used a stringent algorithm to identify 591 exons that were differentially spliced in the brain relative to immune tissues, and 6.6% of these showed major splicing defects in the neocortex of Nova2(-/-) mice. We tested 49 exons with the largest predicted Nova-dependent splicing changes and validated all 49 by RT-PCR. We analyzed the encoded proteins and found that all those with defined brain functions acted in the synapse (34 of 40, including neurotransmitter receptors, cation channels, adhesion and scaffold proteins) or in axon guidance ( 8 of 40). Moreover, of the 35 proteins with known interaction partners, 74% (26) interact with each other. Validating a large set of Nova RNA targets has led us to identify a multi-tiered network in which Nova regulates the exon content of RNAs encoding proteins that interact in the synapse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据