4.5 Review

Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00060.2005

关键词

hydrogen peroxide; hypoxia; Nox oxidase; mitochondria; pentose phosphate pathway

资金

  1. NHLBI NIH HHS [HL-43023, HL-31069, HL-66331] Funding Source: Medline

向作者/读者索取更多资源

Vascular smooth muscle (VSM) derived from pulmonary arteries generally contract to hypoxia, whereas VSM from systemic arteries usually relax, indicating the presence of basic oxygen-sensing mechanisms in VSM that are adapted to the environment from which they are derived. This review considers how fundamental processes associated with the generation of reactive oxygen species (ROS) by oxidase enzymes, the metabolic control of cytosolic NADH, NADPH and glutathione redox systems, and mitochondrial function interact with signaling systems regulating vascular force in a manner that is potentially adapted to be involved in Po-2 sensing. Evidence for opposing hypotheses of hypoxia, either decreasing or increasing mitochondrial ROS, is considered together with the Po-2 dependence of ROS production by Nox oxidases as sensors potentially contributing to hypoxic pulmonary vasoconstriction. Processes through which ROS and NAD(P) H redox changes potentially control interactive signaling systems, including soluble guanylate cyclase, potassium channels, and intracellular calcium are discussed together with the data supporting their regulation by redox in responses to hypoxia. Evidence for hypothesized potential differences between systemic and pulmonary arteries originating from properties of mitochondrial ROS generation and the redox sensitivity of potassium channels is compared with a new hypothesis in which differences in the control of cytosolic NADPH redox by the pentose phosphate pathway results in increased NADPH and Nox oxidase-derived ROS in pulmonary arteries, whereas lower levels of glucose-6-phosphate dehydrogenase in coronary arteries may permit hypoxia to activate a vasodilator mechanism controlled by oxidation of cytosolic NADPH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据